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Set Theory

A set is just a collection of elements denoted e.g.,
S = {s1,5,53}, R = {r : some condition holds on r}.

» Intersection: the elements that are in both sets:
ANB={x:x€ Aand x € B}

» Union: the elements that are in either set, or both:
AUB={x:x€Aorx € B}

» Complementation: all the elements that aren’t in the set:
A€ = {x:x & A}.




Properties

» Commutativity: AUB=BUA

» Associativity: AU(BUC)=(AUB)UC.

» Distributive properties: AN(BUC)=(ANnB)U(AN ()
AU(BNC)=(AuB)N(AU ()

P(AUB)=P(A)+P(B)—P(ANB)



Mutually Exclusive

» A sequence of sets A;, A ... is called pairwise disjoint or
mutually exclusive if for all i # j, A; N Aj = {}.

» If the sequence is pairwise disjoint and | J72; Aj = S, then the
sequence forms a partition of S.

Q
Partitions are useful in probability theory and in life:

BNS = BN (| JA) (def of partition)
i=1

— U(B N A;) (distributive property)
i=1

Note that the sets B N A; are also pairwise disjoint



Terminology

Name What it is Common What it means
Symbols

Sample Space Set Q.5 “Possible outcomes.”

Event Space Collection of subsets | F, E “The things that have
probabilities..”

Probability Measure | Measure P, Assigns  probabilities
to events.

Probability Space A triple (Q..F, P)

Q= {1,2,3,4,5,6}
F =2%= {{1},42}... {1,2}. .. {1,2,3%... 11,2,3.,4,5,6}, {3}
P({1}) = P({2}) =... = ¢ (i.e., a fair die)

P({1,3,5}) = 3 (i.e., half chance of odd result)
P({1,2,3,4,5,6}) = 1 (i.e., result is “almost surely” one of the faces).




Axioms of probability

A set of conditions imposed on probability measures (due to
Kolmogorov)

» P(A) > 0,VAe F
» P(Q) =1
> P(UZ1 Ai) = 2121 P(Ai) where {A;}2, € F are pairwise
disjoint.
These quickly lead to:
> P(AC) =1 — P(A) (since P(A) + P(A) = P(AU AS) = P(Q) = 1).
» P(A) <1 (since P(A°) > 0).



Conditional probability

For events A, B € F with P(B) > 0, we may write the
conditional probability of A given B:

P(AN B)
P(B)
Interpretation: the outcome is definitely in B, so treat

B as the entire sample space and find the probability
that the outcome is also in A.

P(A|B) =

This rapidly leads to: P(A|B)P(B) = P(AN B) aka the “chain rule for
probabilities.” (why?)

When A, Ay ... are a partition of Q:

oo

PlB) = i P(BNA) =Y P(B|A)P(A)

i=1

This is also referred to as the “law of total probability.”



Bayes’ Rule

Using the chain rule we may see:

P(A|IB)P(B) = P(ANn B) = P(B|A)P(A)

Rearranging this yields Bayes’ rule:

P(B|A) = P(ALB(,)AI)D(B)
Often this is written as:
P(A|B;)P(B;)

PUBIA) = S p(A1B)P(B)

Where B; are a partition of Q (note the bottom is just the law of
total probability).



Example problem

A person uses his car 30% of the time, walks 30% of the time and rides the bus 40% of the time as he goes to
work. He 1s late 10% of the time when he walks: he is late 3% of the time when he drives: and he 1s late 7% of
the time he takes the bus.

a. What is the probability he took the bus if he was late?
b. What 1s the probability he walked if he 1s on time?



Solution




Example problem 2

Suppose we have 3 cards identical in form except that both sides of the first card
are colored red, both sides of the second card are colored black, and one side of
the third card is colored red and the other side is colored black.

The 3 cards are mixed up in a hat, and 1 card is randomly selected and put down
on the ground.

If the upper side of the chosen card is colored red, what is the probability that the
other side is colored black?



Solution

Let RR, BB, and RB denote, respectively, the events that the chosen cars is the red-red,
the black-black, or the red-black card. Letting R be the event that the upturned side of the
chosen card is red, we have that the desired probability is obtained by

P(RBNR)

P(RB|R) = —po

P(R | RB)P(RB)
P(R| RR)P(RR) + P(R | RB)P(RB) + P(R | BB)P(BB)

(3)(3) 1

WG +G)E) +0G) 3
This question was actually just like the Monty Hall problem!



Independence

Two events A, B are called independent if P(ANB) = P(A)P(B).

When P(A) > 0 this may be written P(B|A) = P(B)
e.g., rolling two dice, flipping n coins etc.

Two events A, B are called conditionally independent given C
when P(AN B|C) = P(A|C)P(B|C).

When P(A) > 0 we may write P(B|A, C) = P(B|C)
e.g., the weather tomorrow is independent of the weather

yesterday, knowing the weather today.” Information on some of the events

does not change probabilities related to the
remaining events



Example problem 3

Jake is shooting free throws. Making or missing free throws doesn't change the
probability that he will make his next one, and he makes his free throws 88% of

the time.

What is the probability of Jake making all of his next 9 free throw attempts?



Is independence the same as mutually exclusive?

Independence: Two events are independent if the occurrence of one event does not affect the probability
of the other event occurring. In other words, the events have no influence on each other.

Example: Consider the act of flipping a coin and rolling a die. Flipping a coin (resulting in heads or tails)
has no effect on the outcome of rolling a die (resulting in a number from 1 to 6), and vice versa. These two
events are independent.

Mutual Exclusivity: Two events are mutually exclusive if they cannot occur at the same time. In other
words, the occurrence of one event means the other cannot possibly happen.

Example: Consider drawing a single card from a standard deck of 52 cards. The event of drawing a heart
and the event of drawing a club are mutually exclusive. If you draw a heart, it cannot simultaneously be a
club, and vice versa.



An example of events that are independent but not mutually
exclusive involves rolling two dice. Let's define two events:

Event A: Rolling an even number on the first die.
Event B: Rolling an even number on the second die.

These events are independent because the outcome of the first
die does not affect the outcome of the second die. The probability
of rolling an even number on one die is not influenced by the
result of the other die.

However, these events are not mutually exclusive. Mutually
exclusive events cannot happen at the same time, but in this
case, both Event A and Event B can occur simultaneously. For
example, if you roll a 4 on the first die (Event A occurs) and a 6
on the second die (Event B occurs), both events have happened
together.

Thus, this scenario illustrates two events that are independent
(the outcome of one die doesn't affect the outcome of the other)
but not mutually exclusive (both can happen at the same time).

An example of mutually exclusive events that are not
independent involves a single card draw from a standard deck of
52 playing cards. Let's define two events:

Event A: Drawing an Ace.
Event B: Drawing a King.

These events are mutually exclusive because a single card
cannot be both an Ace and a King at the same time. If you draw
an Ace, it is impossible for that same card to be a King, and vice
versa.

However, these events are not independent. Independence
implies that the occurrence of one event does not affect the
probability of the other. In this case, if you know that Event A has
occurred (you've drawn an Ace), the probability of Event B
occurring (drawing a King) becomes 0, because the card drawn
is already known to be an Ace. Similarly, if Event B occurs, the
probability of Event Ais 0. This dependence means the events
cannot be independent.

So, in this scenario, you have two events (drawing an Ace and
drawing a King) that are mutually exclusive (cannot occur
together) but not independent (the occurrence of one affects the
probability of the other).



Random Variable

associates a value to
the outcome of a randomized
event

A random variable is a function X : Q — R9
e.g.,
» Roll some dice, X = sum of the numbers.

» Indicators of events: X(w) = 1a(w). e.g., toss a coin, X = 1 if it came
up heads, 0 otherwise.

» Give a few monkeys a typewriter, X = fraction of overlap with complete
works of Shakespeare.

» Throw a dart at a board, X € R? are the coordinates which are hit.



Cumulative Distribution Function

OFy(x)=PX<x)VxeX

® The CDF completely determines the
probability distribution of an RV

® The function F(x) is a CDF i.i.f
Q xl_i)r_nooF(x) =0 and ;i_)r{)loF(x) =
@ F(x) is a non-decreasing function of x
@ F(x) is right continuous: Vx, xllgclo F(x) = F(xp)

X >%q



|dentically Distributed RVs

® Two random variables X;and X,are identically
distributed iif for all sets of values A

P(X,€A)=PX, €A

® So that means the variables are equal?
@ NO.

@ Example: Let’s toss a coin 3 times and let X and X
represent the number of heads/tails respectively

@ They have the same distribution but X; = 1 — Xy



Discrete vs. Continuous RVs

® Step CDF ® Continuous CDF
® X is discrete ® X is continuous
® Probability mass ® Probability density
@ fy(x) =P(X =x) Vx @ Fy(x) = [*_ fx(®)dt vx
1
. » B 2 o RN b = B = AR




Interval Probabilities

® Obtained by integrating the area under the curve
f(x)
Pxi<X<x)=

xzfx (x)dx

X1

NN

X1 X2
® This explains why P(X=x) = 0 for continuous distributions!
PX =) < li_r’rtl,[Fx(x) —E(x—-¢€)] =0
€ >0



Example problem 4

Suppose we toss a fair coin until we get exactly two heads. Describe the sample space S.
Calculate the probability mass function of the random variable describing the number of
tosses, i.e., calculate the probability that exactly k tosses are required for each possible

value of k.



Let A; be random variable describing the outcome of ith toss and N be random variable describin;
the total number of tosses. Then,

) 1,if we got head in ith toss
’ 0, if we got tail in 7th toss

The sample space S will be

N-1
S = {(Al,Ag,...,AN) 2y A= 1,AN=1,N22}

=1

and the probability that exactly k tosses are required will be

P(N 2 k) o (kII)P(Az = 1)2P(A7. — O)k—27 k= 2,3,
- 0, otherwise
k—1)! 2 k-2
e B3, k=23,
0, otherwise

ws %:151'7 k= 27 37 SR
0, otherwise



Expectation

We may consider the expectation (or “mean”) of a distribution:

E(X) = {Zx xfx (x) X is discrete

Expectation is linear:

E(aX + bY +¢)

f_ocoo xfx(x) dx X is continuous

Y (ax+ by + ) fxv(x,y)

X,y
Z axfx,y(x,y) + Z byfx.v(x,y) + Z cfx,y(x,y)
X,y X,y X,y

afox,v(X,y) + befx,v(x.,y) + CZ fx,v(x,y)

X,y X,y X,y
aZxZ fx.v(x,y)+ beZ fx.y(x,y)+c
X 3% y X
afox(x) + befy(y) +c
x y

aE(X)+ bE(Y)+c



Variance

We may consider the variance of a distribution:

Var(X) = E(X — EX)?
This may give an idea of how “spread out” a distribution is.

A useful alternate form is:

E(X — EX)? = E[X?-2XE(X)+ (EX)?}]
= E(X?) —2E(X)E(X) + (EX)?
= E(X?)— (EX)?



Variance

Variance is non-linear but the following holds:
Var(aX) = E(aX — E(aX))’ = E(aX — aEX)? = °E(X — EX)? = a°Var(X)

Var(X+c) = E(X+c—E(X+c))* = E(X—EX+c—c)* = E(X—EX)? = Var(X)

Var(X+Y) = E(X-EX+Y —EY)?
= E(X—EX)*+E(Y — EY)*+2E(X — EX)(Y — EY)
Va:(,X ) Va:((Y) Cov(‘),(,Y)

So when X, Y are independent we have:

why?
Var(X + Y) = Var(X) + Var(Y)



Moments (characteristic of a distribution)

® Expectations

@ The expected value of a function g depending on ar.v. X~P is
defined as Eg(X) = [ g(x)P(x)dx

® n™" moment of a probability distribution

H, = fx"P(x)dx

® meanu =
® nth central moment

Hy' = j(x =)t P (x)dx

!

® Variance ¢? = p,



Table of Common Distributions

taken from Statistical Inference by Casella and Berger

Discrete Distrbutions

distribution pmf mean variance mgf/moment
Bernoulli(p) p"(1—-p)'—=; 2=0,1; p€ (0,1) P p(1—p) (1-p) +pet
Beta-binomial(n, «, 3) (Z) ;(gr(@;) I‘(z?:(cx:‘l;(ﬁn;s+ﬁ) ze (anjg)'_

Notes: If X|P is binomial (n, P) and P is beta(a, 3), then X is beta-binomial(n, «, 3).

Binomial(n, p) (M (Ll=—p) =% w=1,...;n np np(l —p) [(1 - p)+ pet]™
Discrete Uniform(N) & z=1,...,N — W = Z:;l eit

s 1N r—1. , i 1— Ee'
Geonlet'llc(p) p(l p) P (= (O- 1) P ?2 1—(1—p)e’

Note: Y = X — 1 is negative binomial(1, p). The distribution is memoryless: P(X > s|X >t) = P(X > s — ).

: y )( N»__‘Y) KM KM (N—M)(N—k)
Hypergeometric(N, M, K) W = I 5 7 UN(TU ?
M-(N-K)<z<M; NNM,K>0
Negative Binomial(r,p)  ("**=1)p"(1 - p)*; p € (0,1) @ % (1_—0111,?)
(UDp(A—pP " Y =X +r
Poisson(A\) e_;’\l; A>0 X DY eMe'—1)

Notes: If Y is gamma(c, 3), X is Poisson(%), and « is an integer, then P(X > a) = P(Y <y).




Continuous Distributions

distribution pdf mean variance mgf/moment

Tlat+8) | 21 B-1, a af k=1 a+r tk
Beta(a, 3) e (1-2)7 1 z2€(0,1), a,3>0 55 @ A (aspiD) 1+ ¥ (H' =0 ﬂ+»’+") '
Cauchy(f, o) %ﬁ a>0 does not exist  does not exist does not exist

Notes: Special case of Students’s ¢ with 1 degree of freedom. Also, if X,V are iid N(0,1), < 7 is Cauchy

2 1 By =z

Xp Wr! ez; x>0, peN P 2p
2
Notes: Gammal(%,2).
Double Exponential(y, o) ,_,l == >0 " 20
Exponential(6) % 5 x>0,0>0 [} 0?
Notes: Gamma(1,#). Memoryless. ¥ = X 7 is Weibull. Y = ,/2X is Rayleigh. Y = a — v log is Gumbel.
l..(u - ) :Il' ; vy —2 3 _§
F, ,’.,("—) 2T . r>0 2 >2  2:2;)2aEn=2 4,5y
vi.va r(Z)0(F) \v2 (1+('—'1):)‘l§_1 -2 V2 (Z22) taca): ¥
xf,l /v
Notes: Fy, v, = where the y?s are independent. F, = (2.
X2, /v
Gamma(a, 3) ﬁ z2=1e"F; 23>0, a,3>0 aj af?
Notes: Some special cases are exponential (a =1) and }? (a =%,8=2). fa=2, Y = ,/ is Maxwell. Y =
ST A 1 ,‘x_:_su 25
Logistic(p. 3) FT———a—r; 8>0 I S
14 P
Notes: The cdf is F(z|u, 3) = +,__;t
+e F
3 sd _tx.»xx—u)’_ ; = 2(pu+a?) _  2u+a?
Lognormal(y, o~) Teaze = 2>0,6>0 gt g e e
(z—u)?
Normal(p, o2) \/2'_"52_ 27 ; 0>0 m o?
s Ga? a £ £
Pareto(a, 3) I‘h ;x> a, a,8>0 }"l, g51 '»i_l%(d_" B>2
o) g 1
Ly T Vor (g a2 B 0, v>1 > 2
Notes: 2 = F, ,,.
; b—a)?
Uniform(a, b) ﬁ, a<zr<bh i‘zﬂ (l—;)

ekt
1—(ot)?
1 1
o L< g
EX" = |l+2n)r(y2—2n)

o
1 1
(m) »t< 7

+ is inverted gamma.

p 1
eMT(1+ 1), |t < &

EX" = (:"‘H-‘d?ﬁ
2,2
el‘t+’ ¢

does not exist

n (=2 ]r(l/—z)
EX VEL(%)
?ﬁ! _eul

(b—a)t

T(Z)T(=Z)

n

2.

v2 o va
(‘V_l) s n< 3

n even



Example problem 5

Let X1, X2, ..., X, be random variables all with unknown distributions, whose mean is 0, their

IR : : X+ Xo+..4+X, .
deviation is 1 and all are independent from one another. Let Y = — S . Find E[Y] and

a(Y).




Solution
X

Y can also be written =

0 = 0, in accordance with your

==

The expectation of Y is E(ZX) = %E(Z X) = %ZE(X) =

n
intuition.

The variance of Yis var(Y) = var(%) = #var(z X) = ;12- > wvar(X) = g = 1. Standard

deviation is the square root of this, o(Y) = ﬁ



Example problem 6

Suppose we generate a random variable X in the following way. First we flip a fair coin.
If the coin is heads, take X to have a U(0,1) distribution. If the coin is tails, take X to
have a U(3,4) distribution.

(a) Find the mean of X.
(b) Find the standard deviation of X.



Solution

(a) Let e ~ Bern(0.5), Uy ~ U(0,1) with E[U1] = § and Var[U1] = 15, Uz ~ U(3,4) with E[U,] = 1
and Var[U] = L. Then X = 1(e = 1)U; + 1(e = 0)U.
E[X]=E[E[U | €]
=ple=1E[U |e=1]+p(e =0)E[U | e = 0
= 0.5E[U3] + 0.5E[U}]
=2

(b) We have E[U7] = Var[U1] + E[U1)? = & and E[U3] = Var[Us] + E[U,]? = &I.

Var[X] = E[X?] — E[X]?
=E[E[U? | {] - E[X]?
= 0.5E[U}] + 0.5E[UZ] — 4
7

3

Thus, the standard deviation of X is \/g ~ 1.5275.



Practice problem (source: 18751)

To the best of our knowledge, with probability 0.8 Al is guilty of the crime for which he is about
to be tried. Bo and Ci, each of whom knows whether or not Al is guilty, have been called to
testify. Bo is a friend of Al s and will tell the truth if Al is innocent but will lie with probability
0.2 if Al is guilty. Ci hates everybody but the judge and will tell the truth if Al is guilty but will lie
with probability 0.3 if Al is innocent.

Given this model of the physical situation:

1. Determine the probability that the witnesses give conflicting testimony.

1

. Determine the probability that Bo commits perjury, determine the probability that Ci com-
mits perjury.

3. What is the conditional probability that Al is innocent given that Bo and Ci gave conflicting
testimony?

4. Are the events {Bo tells a lie} and {Ci tells a lie} independent? Are these events
conditionally independent to an observer who knows whether or not Al is guilty?



